Blog

Kiến trúc Lakehouse trên AWS (phần 1)

Để có được insights tốt nhất từ ​​tất cả dữ liệu, các tổ chức cần di chuyển dữ liệu giữa các data lake và các data warehouse một cách dễ dàng. Khi dữ liệu trong các hệ thống này tiếp tục phát triển, việc di chuyển tất cả dữ liệu trở nên khó khăn hơn. Để khắc phục vấn đề về khối lượng và khả năng di chuyển để tận dụng tối đa tất cả dữ liệu, phương pháp tiếp cận Lakehouse trên AWS đã được giới thiệu.

Doanh nghiệp hoàn toàn có thể sở hữu những insights sâu sắc và phong phú hơn nếu tận dụng và phân tích được tất cả dữ liệu từ các nguồn của doanh nghiệp. Tuy nhiên, lượng dữ liệu này là khổng lồ và không được sắp xếp theo bất kỳ cấu trúc nào.

Để phân tích lượng dữ liệu này, doanh nghiệp phải tập hợp tất cả dữ liệu của mình từ các silo khác nhau và tổng hợp tất cả dữ liệu đó ở một vị trí, gọi là data lake, để thực hiện phân tích và máy học (ML) trực tiếp trên đó. Ngoài ra, doanh nghiệp cũng sử dụng dịch vụ data warehouse để nhận kết quả nhanh chóng cho các truy vấn phức tạp về dữ liệu có cấu trúc hoặc dịch vụ tìm kiếm để nhanh chóng tìm kiếm và phân tích log data để theo dõi tình trạng của hệ thống sản xuất.

Cách tiếp cận Lakehouse

Là một kiến ​​trúc dữ liệu hiện đại, phương pháp Lakehouse không chỉ là tích hợp mà còn là kết nối data lake, data warehouse và tất cả các dịch vụ được xây dựng có mục đích khác thành một tổng thể thống nhất.

Data lake là nơi duy nhất mà bạn có thể chạy phân tích trên hầu hết dữ liệu của mình trong khi các dịch vụ phân tích được xây dựng để cung cấp tốc độ bạn cần cho các trường hợp sử dụng cụ thể như real-time dashboards và log analytics.

Phương pháp tiếp cận Lakehouse này bao gồm các yếu tố chính sau:

  • Data Lake có thể mở rộng
  • Dịch vụ dữ liệu được xây dựng có mục đích
  • Di chuyển dữ liệu liền mạch
  • Quản trị thống nhất
  • Năng lực và Tối ưu chi phí

Sơ đồ sau minh họa phương pháp tiếp cận Lakehouse này về dữ liệu khách hàng trong thế giới thực và sự di chuyển dữ liệu cần thiết giữa tất cả các dịch vụ phân tích dữ liệu và data warehouse, từ trong ra ngoài, từ ngoài vào trong và xung quanh chu vi:

Kiến trúc Lakehouse

Kiến trúc phân tích dữ liệu phân layer và được thành phần hóa cho phép doanh nghiệp sử dụng công cụ phù hợp cho đúng công việc và cung cấp khả năng nhanh chóng để xây dựng kiến ​​trúc theo từng bước.

Bạn có được sự linh hoạt để phát triển Lakehouse nhằm đáp ứng nhu cầu hiện tại và tương lai khi thêm các nguồn dữ liệu mới, khám phá các trường hợp sử dụng mới, đồng thời phát triển các phương pháp phân tích mới hơn.

Đối với Kiến trúc Lakehouse này, bạn có thể tổ chức nó như một mô hình năm layer hợp lý, trong đó mỗi layer bao gồm nhiều thành phần được xây dựng có mục đích giải quyết các yêu cầu cụ thể.

Trước khi đi sâu vào 5 layer, hãy nói về các nguồn cung cấp cho Kiến trúc Lakehouse.

1. Data Sources

Kiến trúc Lakehouse cho phép bạn nhập và phân tích dữ liệu từ nhiều nguồn khác nhau. Nhiều nguồn trong số này chẳng hạn như ứng dụng dòng doanh nghiệp (LOB), ứng dụng ERP và ứng dụng CRM tạo ra các lô dữ liệu có cấu trúc cao ở những khoảng thời gian cố định.

Ngoài các nguồn nội bộ, bạn có thể nhận dữ liệu từ các nguồn hiện đại như ứng dụng web, thiết bị di động, cảm biến, luồng video và phương tiện truyền thông xã hội. Các nguồn hiện đại này thường tạo ra dữ liệu bán cấu trúc và phi cấu trúc, thường là các luồng liên tục.

2. Data Ingestion Layer

Ingestion layer trong Kiến trúc Lakehouse chịu trách nhiệm nhập dữ liệu vào layer lưu trữ Lakehouse. Nó cung cấp khả năng kết nối với các nguồn dữ liệu bên trong và bên ngoài qua nhiều giao thức khác nhau. Nó có thể nhập và cung cấp dữ liệu phát trực tuyến hàng loạt cũng như thời gian thực vào data warehouse cũng như các thành phần data lake của layer lưu trữ Lakehouse.

3. Data Storage Layer

Data storage layer chịu trách nhiệm cung cấp các thành phần bền bỉ, có thể mở rộng và hiệu quả chi phí cao để lưu trữ và quản lý số lượng lớn dữ liệu. Trong Kiến trúc Lakehouse, data warehouse và data lake được tích hợp nguyên bản để cung cấp một layer lưu trữ tích hợp hiệu quả về chi phí hỗ trợ dữ liệu không có cấu trúc cũng như dữ liệu có cấu trúc và mô hình cao. layer lưu trữ có thể lưu trữ dữ liệu ở các trạng thái sẵn sàng khác nhau, bao gồm cả raw, trusted-conformed, enriched, và modeled.

data lake vs data warehouse

3.1. Lưu trữ dữ liệu có cấu trúc trong data warehouse

Data warehouse lưu trữ dữ liệu phù hợp với có độ tin cậy cao, được cấu trúc thành star, snowflake, data vault, hoặc highly denormalized schemas. Dữ liệu được lưu trữ trong kho thường được lấy từ các nguồn bên trong và bên ngoài có cấu trúc cao như hệ thống giao dịch, cơ sở dữ liệu quan hệ và các nguồn hoạt động có cấu trúc khác, thường theo nhịp thông thường.

Các data warehouse cloud-native hiện đại thường có thể lưu trữ dữ liệu quy mô petabyte trong dung lượng lưu trữ hiệu suất cao được tích hợp sẵn ở định dạng cột, nén. Thông qua các công cụ MPP và lưu trữ đính kèm nhanh chóng, một data warehouse cloud-native hiện đại cung cấp khả năng quay vòng độ trễ thấp cho các truy vấn SQL phức tạp.

Để cung cấp dữ liệu được sắp xếp, tuân thủ cao và đáng tin cậy, trước khi lưu trữ dữ liệu trong kho, bạn cần đưa dữ liệu nguồn qua một lượng đáng kể preprocessing, validation, và transformation bằng cách sử dụng extract, transform, load (ETL) hoặc extract, load, transform pipelines (ELT). Tất cả các thay đổi đối với dữ liệu data warehouse và schema đều được quản lý và xác thực chặt chẽ để cung cấp dataset đáng tin cậy trên các business domains.

3.2. Lưu trữ dữ liệu có cấu trúc và không có cấu trúc trong Kiến trúc Lakehouse

Data Lake là data warehouse tập trung lưu trữ tất cả dữ liệu của tổ chức. Nó hỗ trợ lưu trữ dữ liệu ở các định dạng có cấu trúc, bán cấu trúc và phi cấu trúc. Nó cung cấp khả năng lưu trữ theo tầng được tối ưu hóa về chi phí và có thể tự động mở rộng quy mô để lưu trữ exabyte dữ liệu.

Thông thường, một data lake được phân đoạn thành các vùng landing, raw, trusted, và curated để lưu trữ dữ liệu tùy thuộc vào mức độ sẵn sàng của nó. Dữ liệu được nhập và lưu trữ như trong data lake (mà không cần phải xác định schema trước) để tăng tốc quá trình nhập và giảm thời gian cần thiết cho việc chuẩn bị trước khi dữ liệu có thể được khám phá.

Data lake cho phép phân tích các dataset đa dạng bằng cách sử dụng các phương pháp đa dạng, bao gồm cả xử lý dữ liệu lớn và ML. Tích hợp gốc giữa data lake và data warehouse cũng làm giảm chi phí lưu trữ bằng cách cho phép bạn tải một lượng lớn historical data từ kho lưu trữ.

4. Catalog Layer

Layer danh mục chịu trách nhiệm lưu trữ metadata kinh doanh và kỹ thuật về các tập dữ liệu được lưu trữ trong layer lưu trữ Lakehouse. Trong Kiến trúc Lakehouse, danh mục được chia sẻ bởi cả data lake và data storage, đồng thời cho phép viết các truy vấn kết hợp dữ liệu được lưu trữ trong data lake cũng như data warehouse trong cùng một SQL.

Nó cho phép bạn theo dõi các phiên bản schema và thông tin phân vùng chi tiết của các tập dữ liệu. Khi số lượng tập dữ liệu tăng lên, layer này cung cấp khả năng tìm kiếm giúp phát hiện các tập dữ liệu trong Lakehouse.

5. Lakehouse Interface

Trong Kiến trúc Lakehouse, data warehouse và data lake được tích hợp nguyên bản tại các layer lưu trữ cũng như các layer danh mục chung để đưa ra một giao diện Lakehouse thống nhất cho các layer xử lý và tiêu thụ.

Sau đó, các thành phần của layer xử lý và tiêu thụ Lakehouse có thể sử dụng tất cả dữ liệu được lưu trữ trong layer lưu trữ Lakehouse (được lưu trữ trong cả data warehouse và data lake) thông qua một giao diện Lakehouse thống nhất duy nhất như SQL hoặc Spark.

Bạn không cần phải di chuyển dữ liệu giữa data warehouse và data lake theo cả hai hướng để cho phép truy cập vào tất cả dữ liệu trong bộ lưu trữ Lakehouse.

Tích hợp gốc giữa data warehouse và data lake cung cấp cho bạn sự linh hoạt để thực hiện những việc sau:

  • Lưu trữ exabyte dữ liệu có cấu trúc và không có cấu trúc trong bộ lưu trữ data lake hiệu quả về chi phí cao dưới dạng dữ liệu có cấu trúc được quản lý, mô hình hóa và phù hợp cao trong lưu trữ data warehouse nóng
  • Tận dụng một khung xử lý đơn lẻ như Spark có thể kết hợp và phân tích tất cả dữ liệu trong một đường dẫn duy nhất, cho dù đó là dữ liệu phi cấu trúc trong data lake hay dữ liệu có cấu trúc trong data warehouse
  • Xây dựng pipelines ETL hoặc ELT gốc của data warehouse dựa trên SQL có thể kết hợp dữ liệu flat relational trong kho với dữ liệu có cấu trúc phân cấp, phức tạp trong data lake

6. Data Processing Layer

Các thành phần trong lớp xử lý dữ liệu của Kiến trúc Lakehouse chịu trách nhiệm chuyển đổi dữ liệu sang trạng thái có thể tiêu thụ được thông qua xác thực, dọn dẹp, chuẩn hóa, chuyển đổi và làm giàu dữ liệu. Lớp xử lý cung cấp các thành phần được xây dựng theo mục đích để thực hiện nhiều loại chuyển đổi, bao gồm SQL kiểu data warehouse, xử lý dữ liệu lớn và near-real-time ETL.

Lớp xử lý cung cấp thời gian nhanh nhất để tiếp thị bằng cách cung cấp các thành phần được xây dựng theo mục đích phù hợp với các đặc điểm của tập dữ liệu phù hợp (kích thước, định dạng, schema, tốc độ), tác vụ xử lý trong tầm tay và các tập kỹ năng có sẵn (SQL, Spark).

Lớp xử lý có thể mở rộng quy mô hiệu quả về chi phí để xử lý khối lượng dữ liệu lớn và cung cấp các thành phần để hỗ trợ schema-on-write, schema-on-read, dataset được phân vùng và các định dạng dữ liệu đa dạng. Lớp xử lý có thể truy cập các giao diện lưu trữ thống nhất của Lakehouse và danh mục chung, do đó truy cập tất cả dữ liệu và metadata trong Lakehouse. Điều này có những lợi ích sau:

  • Tránh dư thừa dữ liệu, di chuyển dữ liệu không cần thiết và trùng lặp mã ETL có thể xảy ra khi xử lý riêng một data lake và data warehouse
  • Giảm thời gian ra thị trường

7. Data Consumption Layer

Lớp tiêu thụ dữ liệu (hay còn gọi là Data Consumption Layer) của Kiến trúc Lakehouse chịu trách nhiệm cung cấp các thành phần có thể mở rộng và hiệu suất sử dụng giao diện Lakehouse thống nhất để truy cập vào tất cả dữ liệu được lưu trữ trong bộ lưu trữ Lakehouse và tất cả metadata được lưu trữ trong danh mục Lakehouse.

Nó cung cấp các thành phần được xây dựng nhằm kích hoạt các phương pháp phân tích, bao gồm các truy vấn SQL tương tác, phân tích kiểu kho, bảng điều khiển BI và ML, cho phép dân chủ hóa phân tích và đảm báo các cá nhân trong một tổ chức đều tiếp cận được.

Các thành phần trong consumption layer hỗ trợ những điều sau:

  • Viết truy vấn cũng như phân tích và ML giúp truy cập và kết hợp dữ liệu từ các schema chiều của data warehouse truyền thống cũng như các bảng được lưu trữ trong data lake (yêu cầu schema-on-read)
  • Xử lý các tập dữ liệu được lưu trữ trong data lake được lưu trữ bằng nhiều định dạng tệp mở như Avro, Parquet hoặc ORC
  • Tối ưu hóa hiệu suất và chi phí thông qua việc cắt bớt phân vùng khi đọc các tập dữ liệu lớn, được phân vùng được lưu trữ trong data lake

Tiếp theo

Vừa rồi là cách tiếp cận đầu tiên tới kiến trúc Lakehouse, để tiếp tục chuỗi chủ đề này, trong các phần tiếp theo, chúng tôi sẽ đi sâu vào kiến ​​trúc tham chiếu sử dụng các dịch vụ AWS để tạo từng layer được mô tả trong kiến ​​trúc logic Lakehouse. Đọc thêm tại đây.

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    suarairama pestanada beritabandar rumahjurnal podiumnews dailyinfo wikiberita zonamusiktop musicpromote bengkelpintar liburanyuk jelajahhijau carimobilindonesia jalanjalan-indonesia otomotifmotorindo ngobrol olahraga mabar dapurkuliner radarbandung indosiar radarjawa medianews infowarkop kalbarnews ketapangnews beritabumi kabarsantai outfit faktagosip beritagram lagupopuler seputardigital updatecepat marihidupsehat baliutama hotviralnews cctvjalanan beritajalan beritapembangunan pontianaknews monitorberita koronovirus museros iklanjualbeli festajunina capoeiravadiacao georgegordonfirstnation 1reservoir revisednews

    Cara Insting Tajam Menyusun Pola Simetris Baccarat Online Lewat Mekanisme yang Optimal Analisis Pemain Bogor Melalui Logika dan Emosi Mahjong Wins 3 Ternyata Cermin dari Kesabaran Diri Strategi Ganda Baccarat Pemain Makassar Viral! Kemenangan Ganda Membaca Pola Masa Depan Catatan Manual ke Strategi Nyata, Pemain Bogor Temukan Pola Mahjong Ways 2 Membungkam Mitos Keberuntungan Analisis Sunyi Pemain Baccarat Jakarta Temukan Logika di Balik Kekacauan yang Terencana Teknik Presisi Mengatur Kecepatan Spin Mahjong Ways 3 Untuk Kenaikan Hasil yang Ideal Mulai dengan Doa Menang Cara Efektif Menganalisis Trik Baccarat Online Secara Sistematis Cara Unlock Pola Tersembunyi Mahjong Wins 3 Sebagai Langkah Pintar Meraih Kemenangan Trik Escape di Putaran Cepat Pragmatic Gate Olympus Sambut Kemenangan Spesial Pelajari Membaca Pola Sederhana Mahjong Ways 2 Bikin Menang Tipis Tapi Tetap Stabil Taktik Rahasia Supir Pribadi Memanggil Scatter Hitam di Mahjong Ways 2 Saat Drive Thru Cara Intuisi Bekerja Mencatat Pola Baccarat Online Melalui Skema yang Sempurna Tafsir Personal Membuka Pintu Berkah Lewat Mahjong Wins 3 Bikin Keuntungan Tetap Stabil Arsip Data Narasi Gates of Olympus Ciptakan Putaran Warna Spesial Lebih Menguntungan Resonansi Sunyi di Tengah Irama Mahjong Ways 3 Berikan Labirin Menuju Cuan Besar Pahami Aturan Bermain Mahjong Ways dengan Logika yang Mendalam Pelajari Cara Meretas Pola Inti Mahjong Ways 3 Menjadi Kunci Keberhasilan Pemain Pro Langkah Terukur Dalam Mengatur Waktu Baccarat Online Berbalut Mantra Menjemput Kemenangan Trik Spin Matic Mahjong Wins 3 dengan Cermat Menghasilkan Kemenangan Ganda Ternyata Scatter Bisa Turun Lewat Pola Sederhana Melalui Penguasaan Rtp yang Presisi Dimensi Scatter Ganda Mahjong Ways 2 Sebagai Takdir Kemenangan Nyata Merubah Nasib Ekspansi Kosmik Wild Membangun Fitur Kejayaan Abadi Dunia Mahjong Wins 3 Kakek Tua di Pantai Ancol Menemukan Jejak Pola Gates of Olympus Membawa Cuan Berlimpah Kisah Sang Legenda Baccarat Online Temukan Lembaran Data Sebagai Analisa Merubah Garis Kehidupan Cara Mendengar Langkah Sunyi Scatter Hitam Sebagai Sinyal Kemenangan di Mahjong Ways 3 Setelan Ideal Sinkronisasi Pola Mahjong Ways 2 Mengatur Tempo Scatter dengan Hasil Optimal Cara Evaluasi Sederhana Cepat Kuasai Trik Baccarat Online Secara Tepat dan Terarah Konsolidasi Pola Spin Membantu Menunjukkan Arah Strategis di Mahjong Ways 3 Bangkitkan Semangat Menjemput Rejeki Lewat Mahjong Ways Saat Scatter Muncul Tiba-tiba Fakta Unik Mahjong Wins 3: Teknik Rahasia Munculkan Wild Berderet pada Spin Pertama Semarang Menjadi Kota Fantasi Mahjong, Tukang Edit Foto Mengunggah Permainan Pola Mahjong Terbaru Hujan Deras, Sejumlah Pengendara Menepi dan Mencoba Bermain Mahjong Wins 3 yang Sedang Bocor Saat Ini Fenomena Tengah Malam, Mahjong Ways 3 Tiba-Tiba Berubah Warna dan Disebut Masuk Mode Rahasia Scatter Black Peneliti Visual SUHUBET Ungkap Sinkronisasi Pola Mahjong dan Musik, Disebut Harmoni Terserasi Tahun Ini Kobarkan Semangat Syair Mahjong, Tangerang Gelarkan Protokol Putaran Cepat 50 Kali Dalam 1 Kali Coba Spin Strategi Hidup Dan Mati Pola Terbaik Anti Boncor Menghadirkan Berbagai Penghasilan Terbesar Pada Mahjong Ways 3 Hanya Menggunakan Mahjong Ways Mendapatkan Rp150.000.000 Tips Cara Memelihara Anabull Ala Husman Timeline Rahasia Perputaran Mahjong Wins Dapat Membuat Turunnya Pola Jackpot Dengan Konsisten Pengembangan Mahjong Dengan Teknologi Ai Menghadirkan Pola Jackpot Dengan Market Cap Hijau Pola Mahjong Tercepat Dan Tertajam Tips Membaca Pola Hingga Pandai Ala Jefri Dengan Hasil Rp 210.000.000 Shin Tae-Yong Sudah Fix Tidak Melatih Timnas Cek Juga Tempat Jadwal Nonton Bola Harian di SLOTSENSA Cerdas Cermat Membaca Dan Analisis Pola Mahjong Dengan Bermodal 50k Menjadi Rp150.000.000 Sangat Optimis Hanto Dengan Perputaran Menarik Melawan Mahjong Menggunakan Pola Hasil Analisis Data Spirit Perjuangan Hilman Bertambah Besar Setelah Memenangkan Rp 410.000.000 dari Pertarungan Mahjong Sinopsis Penulis Mengungkap Pertarungan Dengan Naga Mahjong Menggunakan Teknik Praktis dan Pola Visual Resmi Mengaspal, Motor NMAX Baru Milik Pencuci Motor Ternyata Berasal dari Rezeki Tak Terduga Cara Paling Efektif Memahami dan Membaca Pola Data Analisis Mahjong Ways Dengan Taktik Lincah Resmi Meluncur di October Ini, Mahjong Menghadirkan Berbagai Pecahan Besar Dengan Hadiah Rp750.000.000 Zona Nyaman Perputaran Mahjong: Bersenang-senang dengan Pecahan yang Terasa Stabil Penyerapan Media Game di Dunia Digital Menghadirkan Berbagai Bakat Desainer Game Muda Eksperimen Membaca RTP Mahjong Ways 2 dan Penggunaan Putaran Auto Pengali 1000 di SUHUBET Tidak Sengaja Menekan Tombol Maksimal di Mahjong Ways 2 Berubah Menjadi Hasil Memukau Rp 460.000.000 Data Analisis Terbesar Bocor, Panduan Pola Mahjong Ways 3 Mendapatkan Rp225.000.000 Tukang Pengantar Makanan Mendapatkan Berkat Dari Mahjong Sebesar Rp110.000.000 Pada Saat Istirahat Cuan Dengan Modal Kecil, Pengaduk Semen Mendapatkan Rp35.000.000 Saat Istirahat Mahjong Dengan Naga Hitam Anti Lag Berkat Fitur Auto Refresh Terbaru Kisah Journey Seorang Pedagang Asongan Bertemu Dengan Mahjong Setelah Mendapatkan Rp 620.000.000 Copy Perputaran ProPlayer Mahjong, Timo Mendapatkan Jackpot 120.000.000 Setelah Mengikuti Jalan Pemain Legend Panduan Analisis Pola Mahjong Terbaru Berdasarkan Data Komunitas SUHUBET Hingga Rp 741.000.000 Perpaduan Analogi dan Anatomi Simbol Terbaru Mahjong Menghadirkan Pembaruan Wild Dengan Menyatakan Rp152.000.000 Di Depan Mata Fenomena Langka di Komunitas Digital Mahjong Black Dragon, Visualnya Bikin Kagum Perpaduan Suara dan Penyajian Semerbak untuk Mata Kita, Mahjong Sedang Melakukan Pembangunan Besar Besaran Beginilah Caranya Agar Perputaran Selalu Stabil dan Membuat Mahjong Seru untuk Diperjuangkan Perbincangan yang Memberikan Esensi Kehidupan Mahjong dengan Datangnya Pola Wild Anti Kalah Host Livestreaming Sedang Menjadi Perbincangan, Dikarenakan Bermain Mahjong dengan Pecahan Besar Diketahui Bermain di SUHUBET Cerita Tukang Parkir Bandung Kagum Lihat Efek Wild Naga di Mahjong Ways Bangsawan SUHUBET Membeberkan Cara Kuasai Teknik Mahjong Dengan Pola Mudah Raup Untung 362 Juta Taktik Multiplier Spin Dengan Tingkatkan Pendapatan di Mahjong, Strategi Sederhana Seorang Penempa Besi Raup Untung 410 Juta Kecil-Kecil Jadi Bukit, Filosofi Putaran Mahjong Tentang Konsistensi dan Hasil yang Besar | Tips Putaran Receh Dikira Kurir Mengantar Paket di Pagi Hari, Ternyata Mengantarkan Simbol Wild 231 Juta di Mahjong kepada Nina Kronologi Jatuhnya Naga Black Scatter Pada Perputaran Gratis Mahjong, Ilham Menghasilkan 410 Juta Analisa Bocoran Data Mahjong Ways dan Pola Putaran RTP Terbaik Bikin Heboh Dunia Digital Observasi Data Menunjukkan Pola Mahjong Ways Muncul Seperti Gelombang Kebahagiaan Riset Pola Harian Mahjong Ways Ungkap Hubungan Menarik dengan Data Digital Pola RTP Tertinggi Ketika Statistik Menjadi Seni Analisis Mahjong Ways Ubah Cara Orang Melihat Pola Pada RTP Tertinggi Penjual Tahu Bulat Dadakan Dikagetkan Sama Pecahnya Wild Mahjong Wins 3 Dengan Membawakan 450 Juta Pemain Pro Dari Kota Madiun Berbagi Taktik Permainan Mahjong Wins 3 Yang Menghasilkan Berbagai Kemenangan Terbukti Ampuh, Suherman Menggunakan Pola Terlarang Permainan Mahjong Ways 3 Dengan Hasil 320.000.000 Rahasia Terbaru Pola Mahjong Ways 3 Terbongkar RTP98% Membawakan Wild Sebesar 410.000.000 Suli Dari Pemantang Siantar Membawakan Pola Terbaru Hasil Analisa Terbaru Mahjong Wins 3 Dengan Cara High Risk High Return Dari Bali Hingga Seoul, Tren Spa Ramah Lingkungan dan Filosofi Mahjong Ways Mulai Jadi Gaya Hidup Baru Di Balik Hening dan Aroma Kayu Manis: Pola Ketenangan yang Sama Seperti Saat Menemukan Irama di Mahjong Wins Gelombang Baru Wellness di Asia Pasifik: Saat Spa dan Pola Mahjong Wins Sama-Sama Bicara Tentang Kesabaran dan Irama Rahasia Di Balik Senyum Para Penerima APSWC 2025 Awards: Dari Pola Hidup Seimbang Hingga Filosofi Mahjong Ways Wellness Tak Lagi Sekadar Tren: Data Menunjukkan Pola Mahjong Ways dan Mindfulness Kini Jadi Arah Baru Dunia repository.tdjpublisher.com